GREEN CHEMISTRY

Laurea Magistrale in Scienze Chimiche Prof. Leucio Rossi

6 CFU – AA 2017-2018

Green Chemistry 06

SOLVENTS IN GREEN CHEMISTRY II

Solvents in Green Chemistry

Use safer solvents and auxiliaries

RENEWABLE SOLVENTS AND OTHER 'GREEN' VOCS

INTRODUCTION

Green Chemistry 06.03

Many solvents can be obtained from renewable feedstocks and they can be used as 'slot-in' alternatives for current VOCs without any need for modification of equipment or procedure.

Introduction

Due to the large number of oxygens in biomass-sourced materials such as cellulose and starch, most renewable solvents have oxygen-containing functional groups: alcohols, esters and ethers being the most common.

Introduction

The most extensively used group of VOC solvents that cannot be biosourced are chlorinated hydrocarbons such as methylene chloride. However, blends of biosolvents can be made and used in many applications where these are normally used.

Hydrocarbons including aromatics could potentially be biosourced through transformations of cellulose and lignocellulose.

Introduction

Although biosourced solvents are nominally green through a life-cycle analysis, they are not perfect. They are still VOCs and have associated risks including atmospheric pollution, flammability and user exposure.

Significant amount of energy are used in their production.

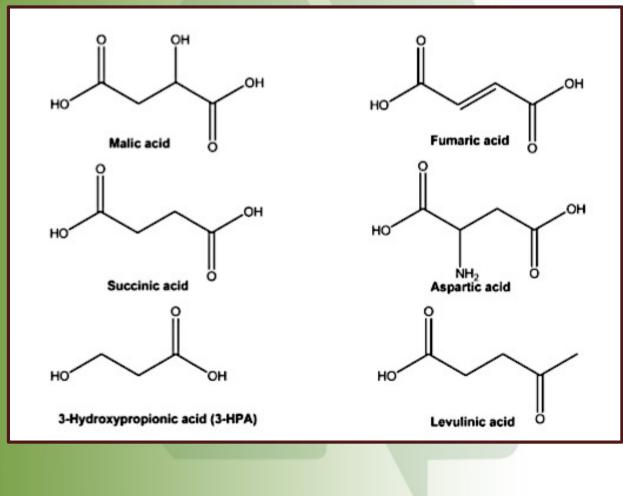
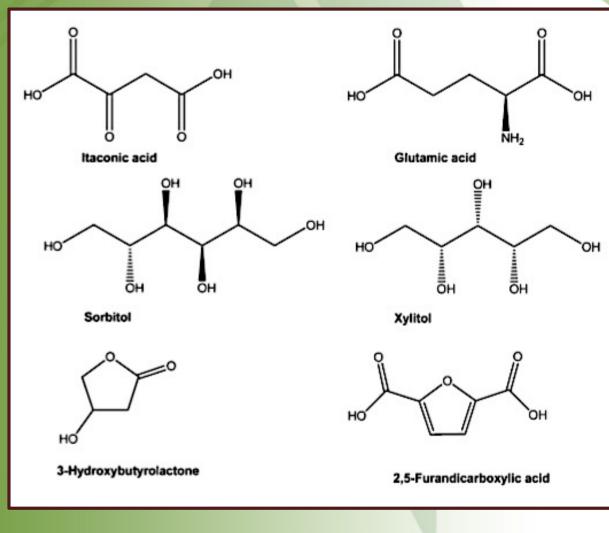
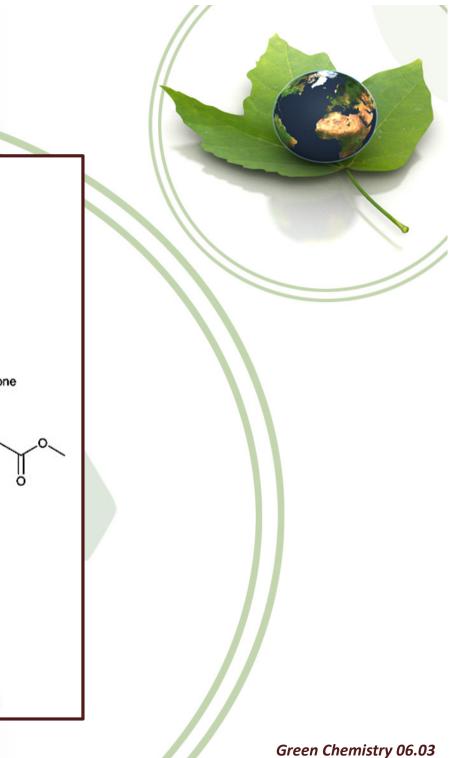
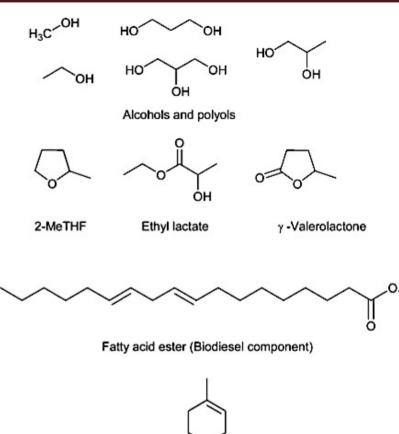


Table 6.1 Types of biomass feedstocks.

Waste materials
Agricultural, wood, and urban wastes, crop residues
Forest products
Wood, logging residues, trees, shrubs
Energy crops
Starch crops such as corn, wheat, and barley, sugar crops, grasses, vegetable oils, hydrocarbon plants (e.g. Pittosporum resiniferum and euphorbia lathyris)
Aquatic biomass
Algae, water weed (including seaweed), water hyacinth


Introduction


Chemicals from natural carbohydrate feedstocks



Introduction

Chemicals from natural carbohydrate feedstocks

Limonene, a terpene (essential oil component)

Figure 6.3 Some solvents available from renewable feedstocks.

- Ethanol is generally produced through fermentation of starch crops or cellulose
- Ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavourings, colourings, and medicines.
- Ethanol is widely used in the food industry and in the extraction of natural products.
- Ethanol is also used in thermometers.

- Methanol can be produced from synthesis gas that can be obtained through biomass gasification.
- It is toxic!!
- In synthetic procedures methanol is more commonly used due to its greater volatility and ease of removal under vacuum.

- Glycerol, is a byproduct of biodiesel production and other processes, is nontoxic and has promising physical and chemical properties as an alternative solvent.
- It has a very high boiling point and negligible vapour pressure and can dissolve many organic and inorganic compounds.

- It is poorly miscible with water and some ethers and hydrocarbons.
- Simple extractions with solvents such as ether and ethyl acetate are also possible.
- It can be converted to methanol, ethanol, 1propanol and propanediols through hydrogenolysis reactions, and is therefore a potential feedstock for other solvents.

Alcohols

Table 6.2Comparison of solvent properties of methanol, ethanol, glycerol.

Property	MeOH	EtOH	Glycerol
Dielectric constant	32.66	24.3	42.5
Density, $g \text{ cm}^{-3}$	0.79	0.79	1.26
Boiling point, °C	64.7	78.4	290
Melting point, °C	-97	-114	18
Viscosity, cP	0.6	1.2	629
pKa	15.5	15.9	14.4
Flash point, °C	12	16	160
Explosion range, lower/upper limit, vol%	6.0/36	3.3/19	Not applicable
Vapour pressure, mm Hg at 20 °C	97	44	<1
Hildebrand, MPa ^{1/2}	29.7	26.2	36.2
Donor number, kcal mol ⁻¹	19	31.5	-

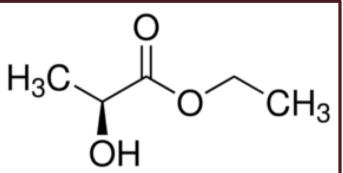

Esters

Table 6.3 Industrial uses of some ester 'green' solvents.

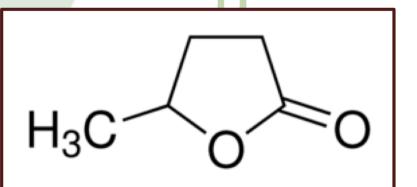
Solvent	Industrial use
Glycerol carbonate	Nonreactive diluent in epoxy or polyurethane systems
Ethyl lactate	Degreaser
	Photoresist carrier solvent
	Clean-up solvent in microelectronics and semiconductor manufacture
2-Ethylhexyl lactate	Degreaser
	Agrochemical formulations
Fatty acid esters (and	Biodegradable carrier oil for green inks
related compounds)	Coalescent for decorative paint systems Agrochemical/pesticide formulations

Ethyl Lactate

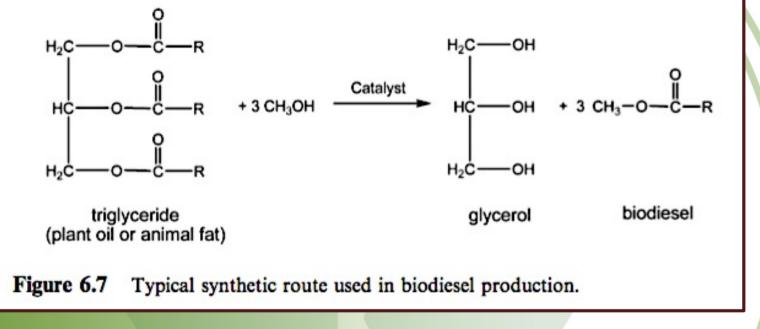
- Ethyl lactate has a boiling point of 154 °C and melting point of –26 °C.
- It has the potential to replace many toxic halogenated solvents.
- It is biodegradable, renewable, noncarcinogenic, noncorrosive, stable in water, has a low vapour pressure and high solvency power.

y-Valerolactone

It has a low melting point (-31 °C), high boiling point (207 °C) and high open cup flash point (96 °C). Its density is 1.05 g/cm³. It is miscible with water and biodegradable. Its vapour pressure is very low even at high temperatures, only 3.5 kPa at 80 °C. It does not form an azeotrope with water, and therefore water can be removed by distillation, as can volatile organic components because of GVL's low volatility and high boiling


H₃C O O

point.


y-Valerolactone

Its high boiling point may also be advantageous in some reaction chemistry by allowing increased rates of reaction. It is stable in air (no peroxides could be detected after 35 days) and it did not hydrolyze in water. However, it can be hydrolyzed and ring-opens in the presence of acid to give γ -hydroxy-pentanoic acid and with aqueous sodium hydroxide, it forms γ -hydroxylpentanoate.

Green Chemistry – Prof. Rossi – AA 2017-2018

Green Chemistry 06.03

Biodiesel

Table 6.4 Summary of advantageous properties of biodiesels including methyl soyate as solvents.

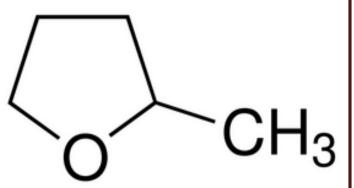
Safety advantages Lower toxicity than toluene and methylene chloride, LD_{50} 17.4 g/kg Low vapour pressure, <0.1 mmHg High flash point, >182 °C Reaction and process advantages Excellent compatibility with other organic solvents, metals and most plastics Low cost, 0.60 US\$ L⁻¹ Environmental advantages Can be biosourced from a range of feedstocks Readily biodegradable Low volatile organic compound level, < 50 g mL⁻¹ Non-ozone-depleting compound Non-SARA reportable^a

"Superfund Amendments and Reauthorisation Act, http://www.epa.gov/superfund/index.htm

Biodiesel

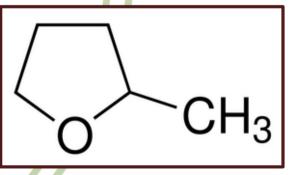
 Table 6.5
 Potential applications of methyl soyate as a solvent.

Industrial parts cleaning and degreasing

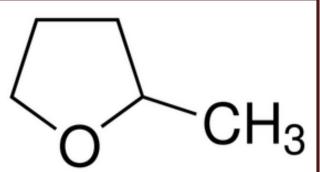

Household cleaners, food processing equipment cleaning, asphalt handling With ethyl lactate, as a cleaner in the aerospace and electronics industries **Resin cleaning and removal** Commercial and military paint strippers (replacing methylene chloride) Printing ink cleaners/Ink press washers (replacing toluene) Adhesive removers (replacing acetone) Graffiti removers (replacing mineral spirits, a mixture of hydrocarbons) **Cleaning up oil spills** Shoreline cleaner^a Refinery or tank farm spills Cleaning reactors and storage tanks **Other** Carrier solvent in paints, stains and anticorrosion coverings Consumer products including hand cleaners

"Listed on the EPA's national contingency plan, http://www.epa.gov/OEM/content/lawsregs/ ncpover.htm

2-Methyltetrahydrofuran (2-MeTHF)

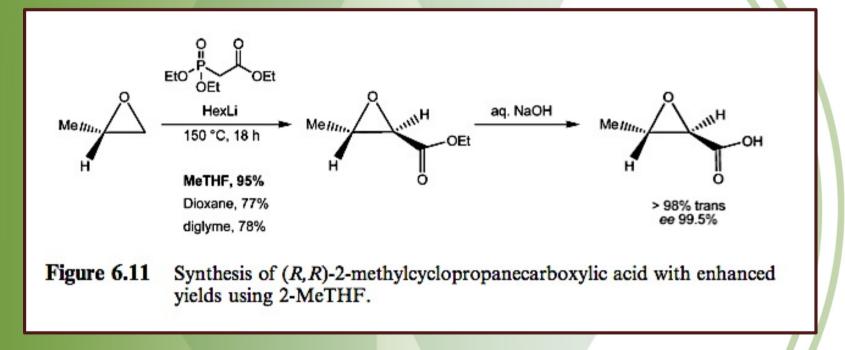

2-MeTHF can be made through a two-step hydrogenation of 2-furaldehyde, which can be produced using agricultural waste such as corncobs and bagasse.

- 2-MeTHF has similar properties to conventional THF, which is used in many organometallic reactions;
- as THF is miscible with water this complicates the quenching process in many of these reactions and other organic solvents have to be introduced to aid in the separation of organic and aqueous phases.


2-Methyltetrahydrofuran (2-MeTHF)

- It forms an azeotrope rich with water and can be more easily dried than THF or dichloromethane;
- It is stable to bases and in degradation studies it has been shown to be more stable towards acids than THF;
- In common with THF and Et₂O, 2-MeTHF is a Lewis base and its polarity (dielectric constant and Hildebrand solubility parameter) is intermediate of these two conventional solvents;

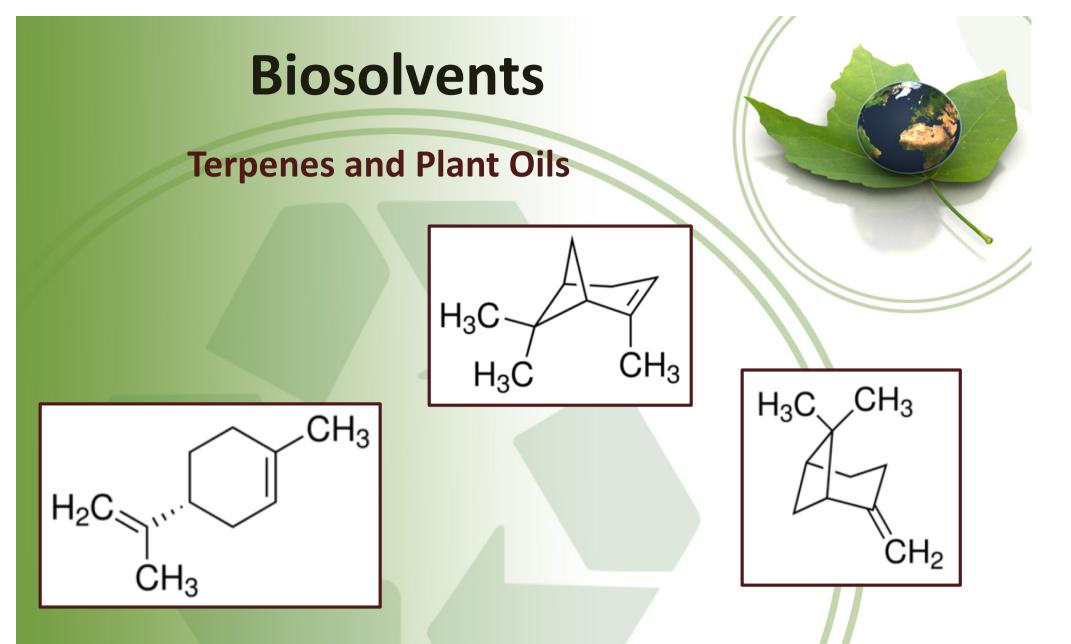
2-Methyltetrahydrofuran (2-MeTHF)


- It has a higher boiling point than THF and therefore higher reaction temperatures can be used that reduce overall reaction times.
- It has a low heat of vaporization, which means less solvent is lost during reaction reflux and this saves energy during distillation and recovery
- 2-MeTHF will form peroxides when exposed to air if no stabilizer is present.

2-Methyltetrahydrofuran (2-MeTHF)

Table 6.6 Comparison of solvent properties of 2-MeTHF with other V solvents.					
Property	2-MeTHF	CPME	THF	Et ₂ O	CH ₂ Cl ₂
Dielectric constant	6.97	4.76	7.58	4.42	8.93
Density, g cm ⁻³	0.85	0.86	0.89	0.71	1.32
Boiling point, °C	80	106	65	35	40
Melting point	-136	<-140	-108.5	-116	-95
Viscosity, cP	0.46	0.55	0.55	0.24	0.42
Solubility of water in solvent, g/100 g	4.4	0.3	miscible	1.2	0.2
Azeotropic temperature with water, °C	71	83	64	34	39
Flash point, °C	-11.1	-1	-14.2	-45	na
Explosion range, lower/ upper limit, vol%	1.5/8.9	1.1/9.9	1.8/11.8	1.8/48	14/22
Hildebrand, MPa ^{1/2}	16.9	-	18.7	15.5	20.2
Solvation energy, kcal mol ⁻¹	0.6	-	0	2.3	
Donor number	18	-	20.5	19.2	-

2-Methyltetrahydrofuran (2-MeTHF)



Carbonates

This class of solvent has several favorable features including:

- low cost and wide availability;
- their polarity;
- a broad liquid temperature range (e.g., for propylene carbonate, m.p. –49 °C, b.p. 243 °C);
- low (eco)toxicity;
- biodegradability.

Unfortunately, at present, industrial routes to linear carbonates use phosgene as a starting material, and cyclic carbonates are made using propylene oxide. These two reagents are highly toxic chemicals

Turpentine is composed of terpenes, mainly the monoterpenes alpha-pinene and beta-pinene with lesser amounts of carene, camphene, dipentene, and terpinolene.

Terpenes and Plant Oils

Table 6.7	Some physical properties of D-limonene and turpentine alongside
	methylene chloride and toluene for comparison.

Property	D-limonene	Turpentine	Toluene	CH ₂ Cl ₂
Dielectric constant	2.37	2.2-2.7	2.38	8.93
Density, g cm ⁻³	0.84	0.85-0.87	0.86	1.32
Boiling point, °C	178	150-180	110	40
Melting point	-74	<-50	-95	-95
Viscosity, cP	0.9	1.49	0.59	0.42
Vapour pressure, kPa at 20 °C	0.19	0.25-0.67	3.8	72
Flash point, °C	48	35	7	na
Explosion range, lower/ upper limit, vol%	Not available	0.8/6	1.1/7.1	14/22

Turpentine is composed of terpenes, mainly the monoterpenes alpha-pinene and beta-pinene with lesser amounts of carene, camphene, dipentene, and terpinolene.

Terpenes and Plant Oils

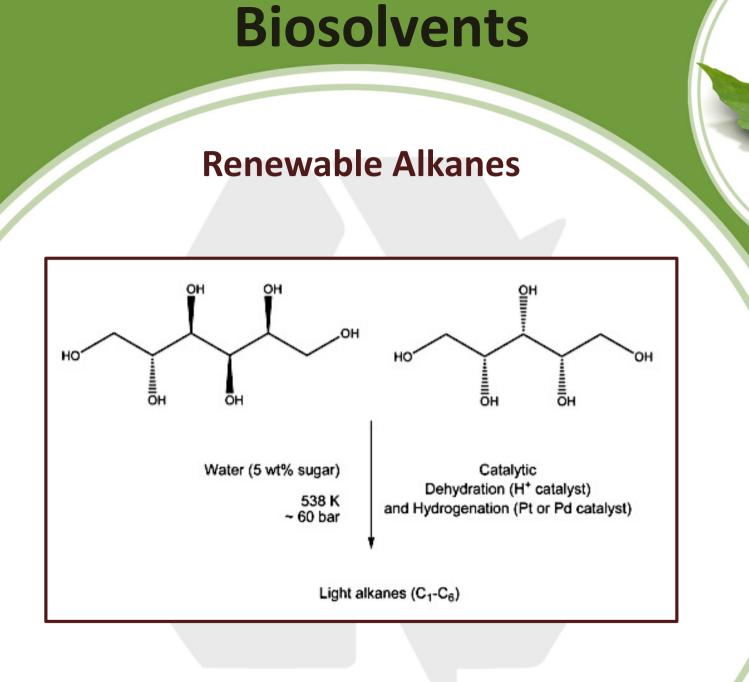
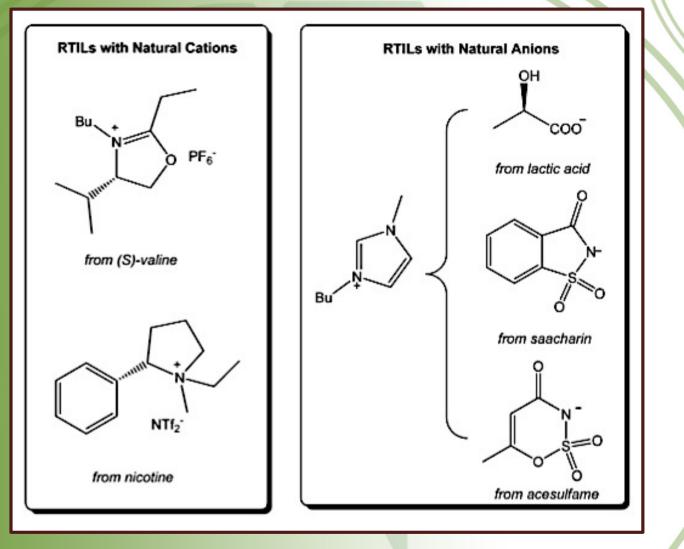
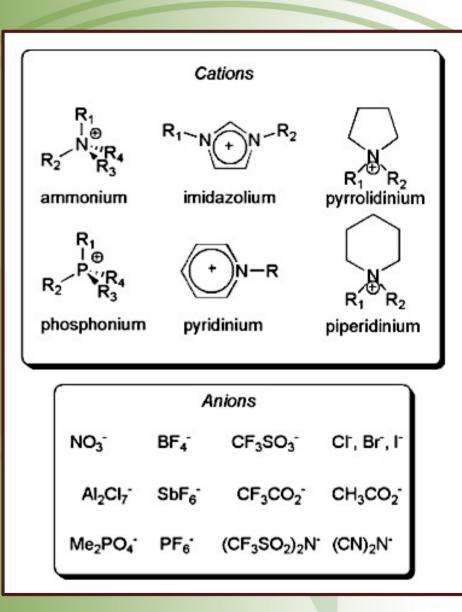


Table 6.8 Summary of advantageous properties of D-limonene.


Safety advantages

Lower toxicity than toluene and methylene chloride, LD₅₀ 4.4 g/kg
Relatively low vapour pressure, <1.5 mmHg
No known long-term health effects on humans. It is classified as noncarcinogenic and nonmutagenic. (Short-term effects include being a slight skin and eye irritant) **Reaction and process advantages**Noncaustic and relatively inert
Pricing competitive with conventional solvents. Food-grade limonene is twice the price of hexane.⁶⁴
High boiling point may be advantageous for some processes **Environmental advantages**Can be biosourced from a range of feedstocks
Readily biodegradable
It is not a SARA Title III compound, and it is not regulated by the Clean Air Act^a

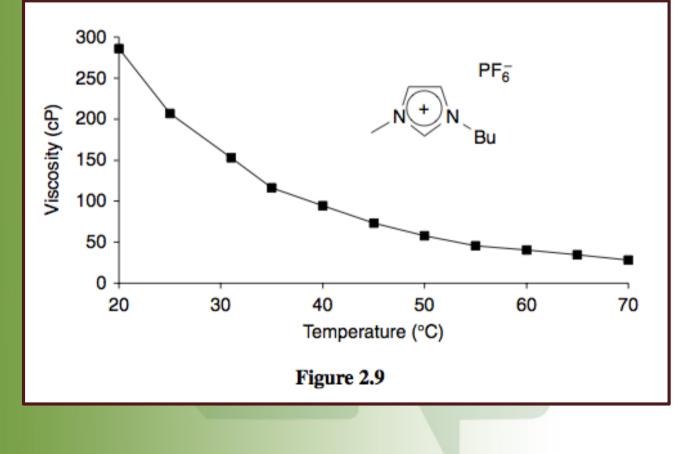
"Superfund Amendments and Reauthorisation Act, http://www.epa.gov/superfund/index.htm

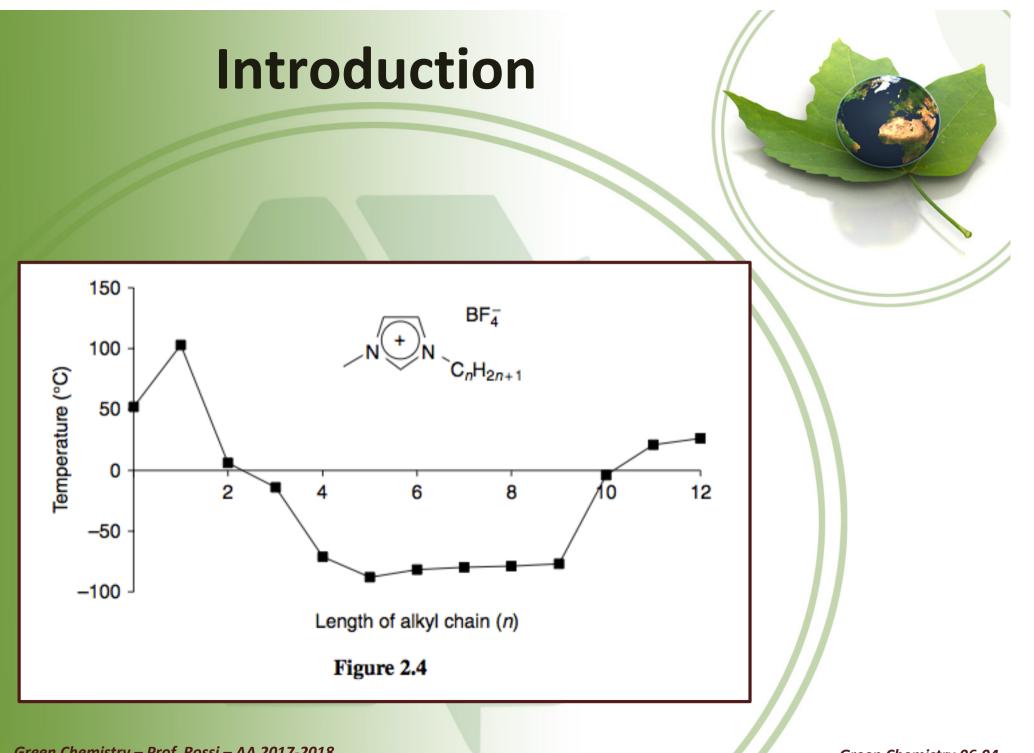

Ionic Liquids

ROOM-TEMPERATURE IONIC LIQUIDS AND EUTECTIC MIXTURES

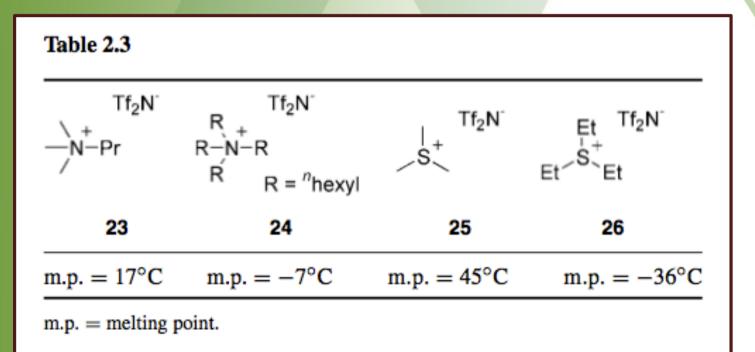
- Ionic liquids are defined as salts with melting points below 100 °C.
- They are of interest to green chemists as alternative solvents because of their inherent low volatility.
- It should be noted that there has been some debate surrounding the green credentials or otherwise of RTILs, particularly regarding their toxicity, environmental persistence

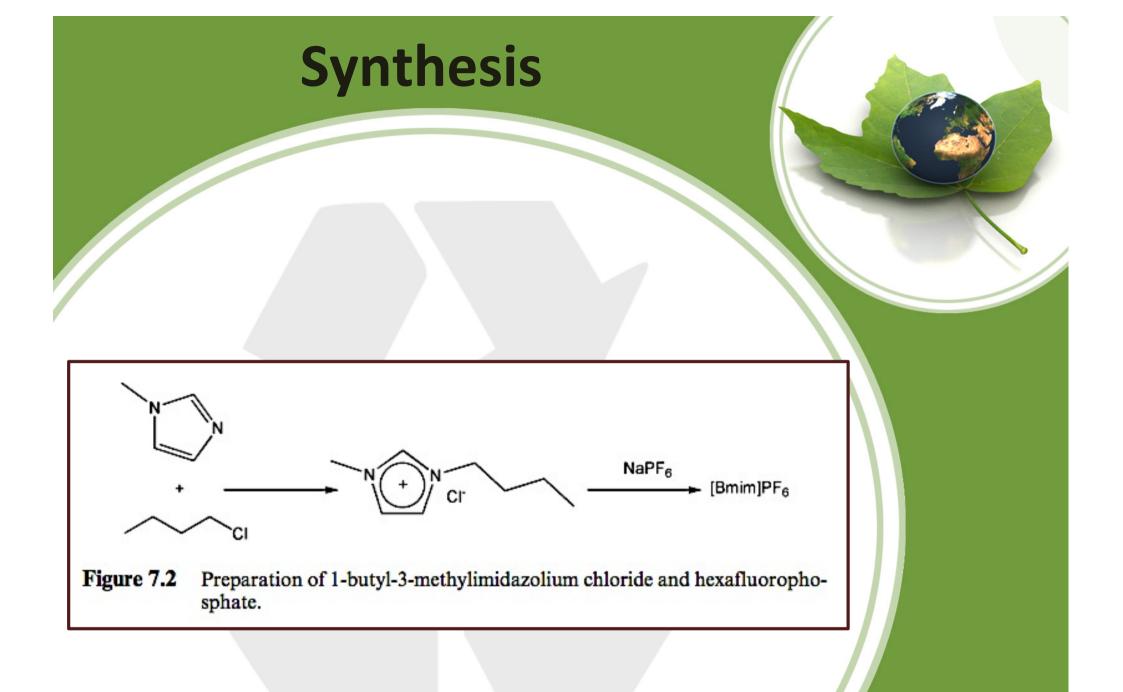
- They have no (or exceedingly low) vapor pressure, so volatile organic reaction products can be separated easily by distillation or under vacuum.
- They are thermally stable and can be used over a wide temperature range compared with conventional solvents Their properties can be readily adjusted by varying the anion and cation. (1-butyl-3-methylimidazolium (Bmim) tetrafluoroborate (BF₄) is a hydrophilic solvent whereas its hexafluorophosphate (PF₆) analogue is hydrophobic.
- The melting points of the ionic liquids are usually lower for more unsymmetrical cations (e.g. [Mmim][BF₄], 103
 °C; [Emim][BF₄], 6 °C and [Bmim][BF₄], -81 °C ([Mmim] is 1,3-dimethyl-imidazolium and [Emim] is 1-ethyl-3methyl-imidazolium).

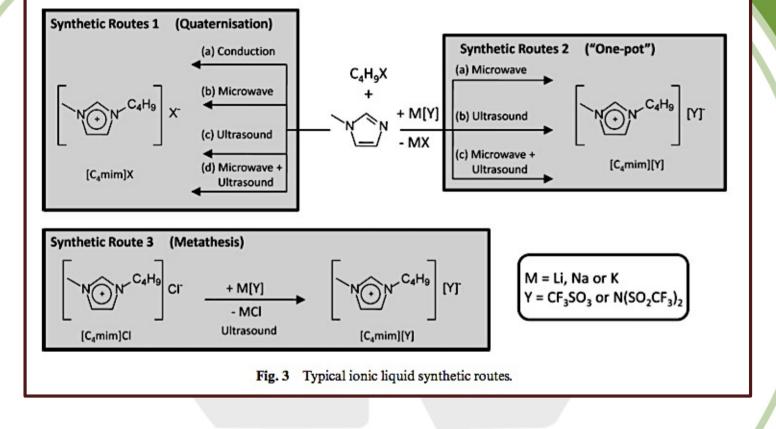

Green Chemistry 06.04


Table 7.1	Some physical properties of imidazolium-based ionic liquids. ^a
-----------	---

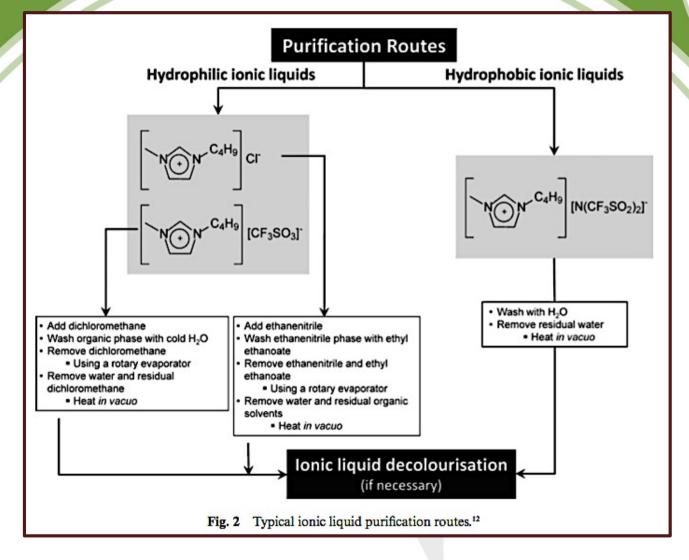
Cation	Anion	Mp, °Ĉ	Thermal stability, °C	Density, g cm ⁻³	Viscosity, cP	Conductivity, ohm ⁻¹ cm ⁻¹
Emim	BF_4^-	6	412	1.24	37.7	1.4
Bmim	BF_4^-	-81	403	1.12	219	0.173
Bmim	$(CF_3SO_2)_2N^-$	-4	439	1.429	52	0.39
Bmim	PF6	-61	349	1.36	450	0.146
Hmim	PF ₆	-61	417	1.29	585	-


^aEmim = 1-ethyl-3-methylimidazolium, Bmim = 1-butyl-3-methylimidazolium, Hmim = 1-hexyl-3-methylimidazolium.




Deep eutectic solvents or mixtures

A series of these materials based on choline chloride (HOCH₂CH₂NMe₃Cl) and metal chlorides, polyols, carboxylic acids or urea have been reported. The urea-choline chloride material has many of the advantages of better-known ionic liquids (e.g. low volatility) but can be sourced from renewable feedstocks, is nontoxic and readily biodegradable.

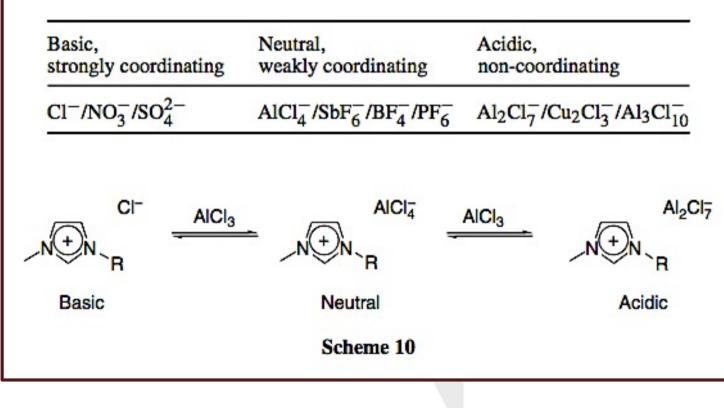

It is not an inert solvent

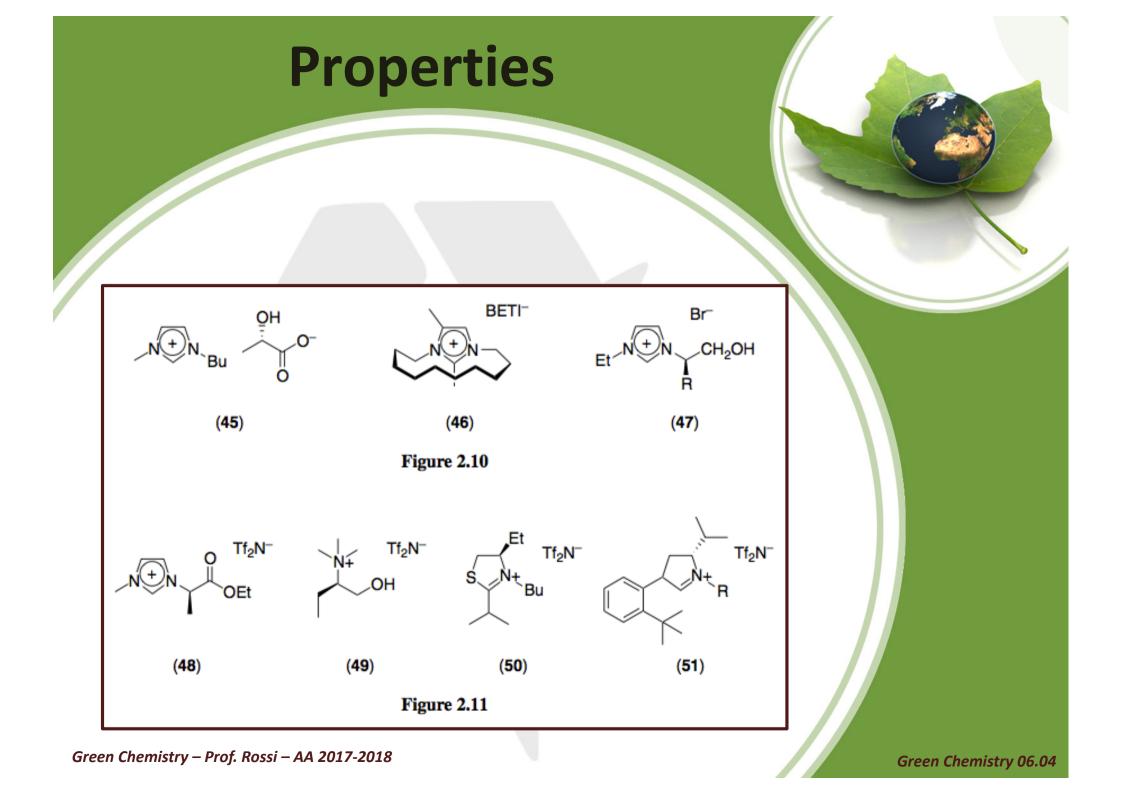
Synthesis

Table 7.2	Polarities of some ionic liquids and VOCs using the E_T^N scale	
-----------	---	--

Solvent	$E_{\mathrm{T}}^{\mathrm{N}}$
Hexane	0.009
[Omim][PF ₆] ^a	0.642
[Bmim][N(CF ₃ SO ₂) ₂]	0.642
Ethanol	0.654
[Bmim][PF ₆]	0.667
[Bmim][CF ₃ SO ₃]	0.667
[Bmim][BF ₄]	0.673
Methanol	0.762
[EtNH ₃][NO ₃]	0.954
Water	1.000

^aOmim = 1-octyl-3-methylimidazolium.


Table 7.3	Miscibility of water and VOCs with [Bmim][PF ₆].		
Solvent	8 _r	Miscibility	
Water	78.3	Immiscible	
CH ₃ OH	32.7	Miscible	
CH ₃ CN	35.9	Miscible	
Acetone	20.6	Miscible	
CH ₂ Cl ₂	8.9	Miscible	
THF	7.8	Miscible	
Toluene	2.4	Immiscible	
Hexane	1.9	Immiscible	



Salt	H ₂ O	MeOH	CH ₂ Cl ₂	Et ₂ O
[bmim][Cl]	Soluble	Soluble	Insoluble	Insoluble
[bmim][BF4]	Soluble	Soluble	Soluble	Insoluble
[bmim][PF6]	Insoluble	Soluble	Soluble	Insoluble
[bmim][NTf ₂]	Insoluble	Soluble	Soluble	Insoluble
[bmim][AlCl ₄]	Not compatible	Not compatible	Soluble	Insoluble

Table 2.9

Properties

Table 2 Influence of the anion on the cytotoxicity of $[C_4 mim]X$ (IPC-81 cell line). Values, given as EC_{50} , were adapted from the UFT/Merck database³² (except for the methylpoly(oxy-1,2-ethanediyl)sulfates)⁶⁴ and $\log_{10}(K_{ow})$ of the anions were predicted using algorithms available on the ChemSpider website¹⁷⁶

Anion structure	Name	EC ₅₀ /μM	$\log_{10}(K_{\rm ow})$
CI-	Chloride	3850	0.00
Br ⁻	Bromide	2670	0.00
I ⁻	Iodide	3030	0.00
[Co(CO) ₄] ⁻	Tetracarbonylcobaltate(-1)	277	_
[SCN] ⁻	Thiocyanate	2610	0.58
[N(CN) ₂] ⁻	Dicyanamide	1420	-0.67
[HSO ₄] ⁻	Hydrogen sulfate	1940	-1.03
[C ₁ SO ₄] ⁻	Methylsulfate	1630	-0.595 ± 0.4
[C ₈ SO ₄] ⁻	Octylsulfate	1680	3.27
[H ₃ CO(CH ₂) ₂ O(CH ₂) ₂ OSO ₃] ⁻	2-(2-Methoxyethoxy)ethylsulfate	1440	-0.80
[H ₃ C(OCH ₂ CH ₂) _n OSO ₃] ⁻	Methylpoly(oxy-1,2-ethanediyl)sulfate	1100	
	4-Methylbenzenesulfonate	1950	0.93
[CH ₃ SO ₃] ⁻	Methanesulfonate	3250	-1.89
$[OTf]^{-}$ (<i>i.e.</i> $[CF_3SO_3]^{-}$)	Trifluoromethanesulfonate	1050	-0.37
[BF ₄] ⁻	Tetrafluoroborate	1030	-
$[PF_6]^-$	Hexafluorophosphate	1250	
[SbF ₆] ⁻	Hexafluoroantimonate	180	-
$[N(CF_3)_2]^-$	Bis(trifluoromethyl)amide	154	3.37
$[NTf_2]^-$ (<i>i.e.</i> $[N(SO_2CF_3)_2]^-)$	Bis{(trifluoromethyl)sulfonyl}amide	481	1.49
$[(C_2F_5)_3PF_3]^-$	Tris(pentafluoroethyl)trifluorophosphate	23.7	_
	Bis[1,2-benzenediolato(2-)]borate	10 ([C ₂ mim] ⁺)	-
	Bis[oxalato(2-)]borate	860 ([C ₂ mim] ⁺)	_

Extractions and Separations

Table 1. Examples of IL extractions of metal ions Extractant/ligand/ IL metal chelator Substances Reference Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ $[C_n MIM][PF_6]$ (n = 4-9) Alkali metals DC18C6 21,37 Na⁺, Cs⁺ $[C_n MIM][PF_6]$ (n = 4, 6, 8) 18C6, DC18C6, Dtb18C6 18 Cs⁺ $[C_n MIM][Tf_2 N]$ (n = 2, 3, 4, 6, 8) BOBCalixC6 38 Na⁺, K⁺, Cs⁺ $[C_n MIM][Tf_2 N]$ (n = 2, 4, 6, 8) DC18C6, N-alkyl 39 aza-18-crown-6 ethers Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ Alkaline earth metals $[C_n MIM][PF_6]$ (n = 4-9)DC18C6 37 Sr2+ $[C_n MIM][PF_6]$ (n = 4, 6, 8) 18C6, DC18C6, Dtb18C6 18 Sr2+ [R₁R₂MeIM][PF₆], [R₁R₂MeIM][Tf₂N] DC18C6 19 Sr2+ 39 $[C_n MIM][Tf_2 N]$ (n = 2, 4, 6, 8) DC18C6, N-alkyl aza-18-crown-6 ethers Pb²⁺ Heavy and radioactive $[C_n MIM][PF_6]$ (n = 4-9) DC18C6 37 metals Cu²⁺, Ag⁺, Pb²⁺, Zn²⁺, Cd²⁺, Hg²⁺ $[C_4 MIM][PF_6]$ Dithizone 23 Cd2+, Co2+, Ni2+, Fe3+, $[C_4 MIM][PF_6], [C_6 MIM][PF_6]$ PAN, TAN 20 Ha2+ Aa+ $[C_n MIM][PF_6]$ (n = 4, 6, 8) Calyx[4]arene-bearing 40 pyridine Cu²⁺, Cr⁶⁺, Zn²⁺ $[C_n MIM][BF_4]$ (n = 1, 3, 6, 8, 10)None 41 $[C_n MIM][PF_6]$ (n = 6, 10) Hg²⁺, Cd²⁺ TSILs 28,35 None Lanthanides (Nd3+, La3+ [C₄MIM][PF₆] CMPO 32 Er3+, Ce3+, Sm3+, Eu3+, Gd³⁺, Ho³⁺) Actinides (Th⁴⁺, U²⁺, Pu⁴⁺) [C₄MIM][PF₆], [C₄MIM][NO₃], Dtb18C6, CMPO, TBP 29.34 AI3+ Others [C₄MIM][Tf₂N], [C₆MIM][PF₆] n/a 42,43 [C₈MIM][PF₆]

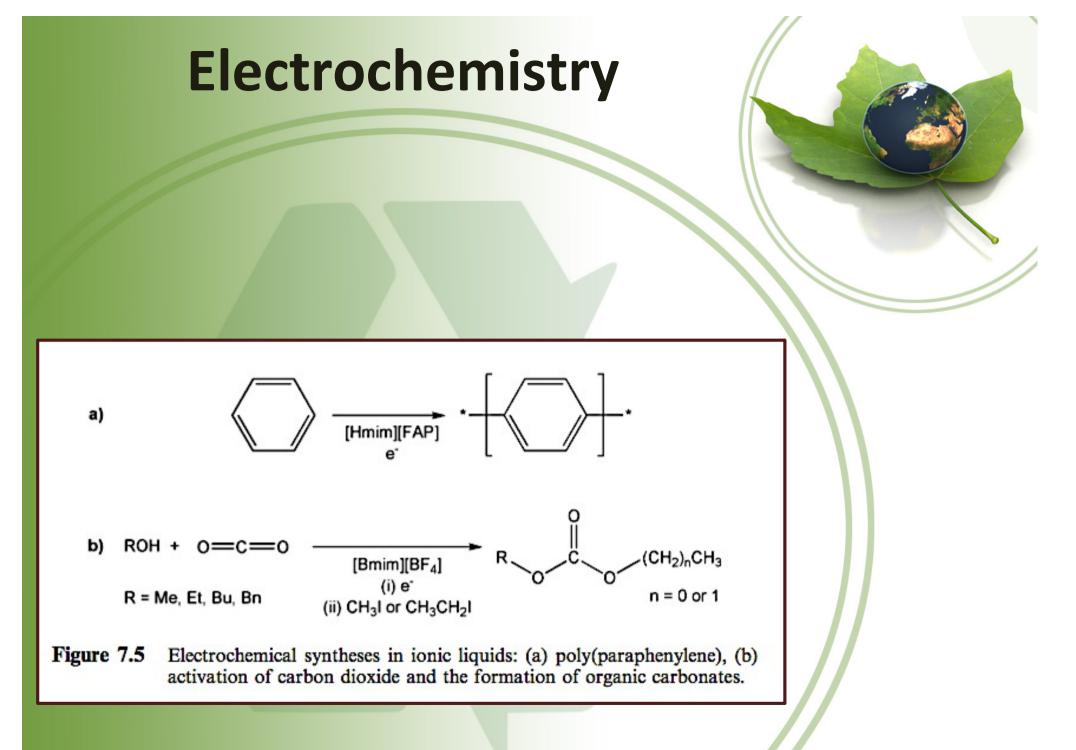
Note: $C_n MIM = 1$ -alkyl-3-methylimidazolium; DC18C6 = dicyclohexano-18-crown-6; 18C6 = 18-crown-6; Dtb18C6 = 4,4'-(5')-di-(tert-butylcyclohexano)-18-crown-6; BOBCalixC6 = calix[4]arene-bis(tert-octylbenzo-crown-6); Tf_2N = bis[(trifluoromethyl)sulfonyl]amide; R_1R_2MeIM = 1-R_1-2-R_2-3-methylimidazolium (R_1 = Bu, Et, or Pr; R_2 = H, or Me); PAN = 1-(2-pyridylazo)-2-naphthol; TAN = 1-(2-thiazolylazo)-2-naphthol; CMPO = octyl(phenyl)-*N*,*N*-diisobutylcarbamoylmethyl phosphine oxide; TBP = tri-*n*-butylphosphate.

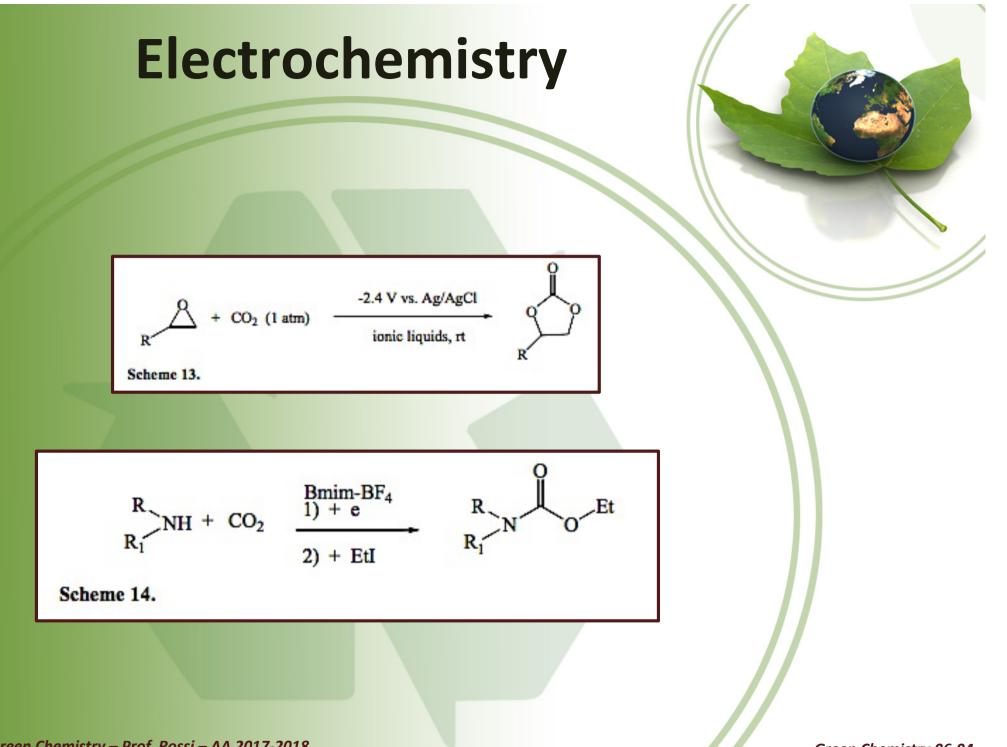
Extractions and Separations

Table 2. Examples of IL e	extractions of organic/bio/biofuel molecules			
	Substances	IL	Extractant	Reference
Phenolic compounds	phthalic acid, aniline, 4-hydroxybenzoic acid, benzoic acid, <i>p</i> -toluic acid, benzene, chlorobenzene, 1,2,4-trichlorobenzene, 1,4-dichlorobenzene, 4,4'-dichlorobiphenyl	[BMIM][PF ₆]	None	44
	Phenol, tyrosol, p-hydroxybenzoic acid	$[C_n MIM][BF_4]$ (n = 1, 3, 6, 8, 10) $[C_n MIM][PF_6]$ (n = 6, 10)	None	41
the second s	Chlorophenols	[C ₄ MIM][PF ₆], [EMIM][Beti]	None	58
Amino acids	Tryptophan, glycine, alanine, leucine, lysine, arginine	[BMIM][PF ₆]	DC18C6	45
Carbohydrates	Xylose, fructose, glucose, sucrose	$[C_n MIM][X]$ (n = 4, 6, 8, 10; X = Cl ⁻ , PF ₆ ⁻ , BF ₄ ⁻)	None	46
	Glucose, sucrose, lactose, cyclodextrin	[BMIM][dca] (carbohydrate solubility is approximately 200 g l ⁻¹)	None	47
	Cellulose	$[C_n M M] X (n = 4, 6, 8)$	None	59
Organic acids	Lactic acid, acetic acid, glycolic acid, propionic acid, pyruvic acid, butyric acid	$[C_n MIM][PF_6]$ (n = 4, 6, 8)	TBP (in some cases)	48
Biofuels	Butyl alcohol (from fermentation broth)	[BMIM][PF ₆], [C ₈ MIM][PF ₆]	Pervaporation was used	49
Antibiotic	Erythromycin-A	[BMIM][PF ₆]	None	50
Hydrocarbons	Olefins (such as ethylene, propylene, and butanes) from paraffins	$[C_n MIM][X], [HPy][X] (n = 4, 6; X = BF_4^-, PF_6^-)$	None	54,55
	C_{4-8} diolefin (such as butadiene) from C_{1-18} paraffins	[BMIM][BF ₄]	None	56

Note: BMIM (or C_4MIM) = 1-butyl-3-methylimidazolium; EMIM = 1-ethyl-3-methylimidazolium; Beti = bis(perfluoroethylsulfonyl)imide; HPy = N-hexylpyridinium; dca = dicyanamide.

Extractions and Separations


Table 7.4	Solubility of various metal oxides in a 2:1 urea-choline chloride
	eutectic at 60 °C.


Metal oxide	Mp of metal oxide, $^{\circ}C$	Solubility, ppm
Al ₂ O ₃	2045	< 1
CaO	2580	6
CuO	1326	470
Cu ₂ O	1235	8725
Fe ₂ O ₃	1565	49
Fe ₃ O ₄	1538	40
MnO ₂	535	493
NiO	1990	325
PbO ₂	888	9157
ZnO	1975	8466

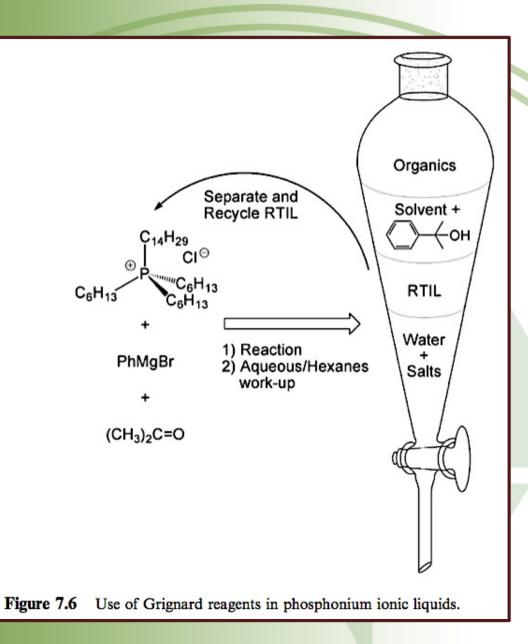
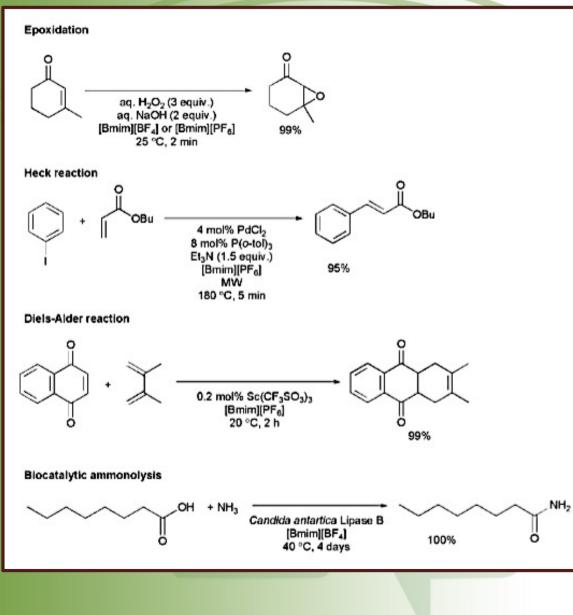
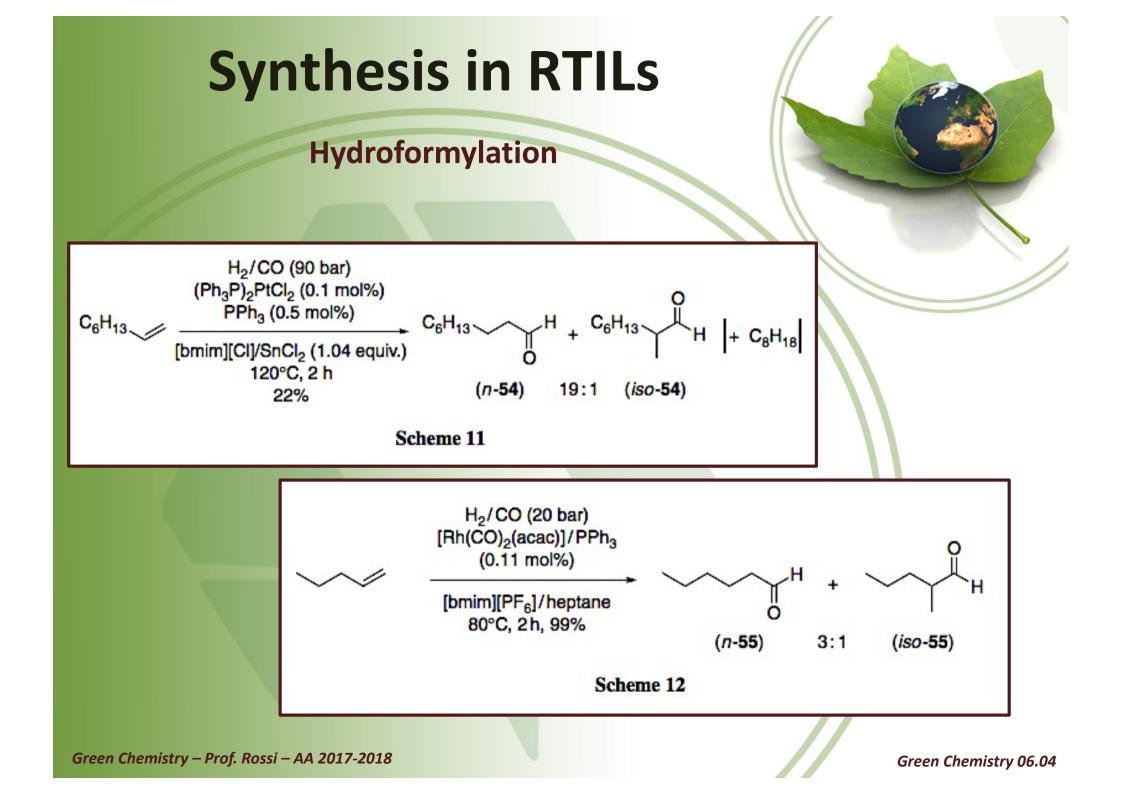
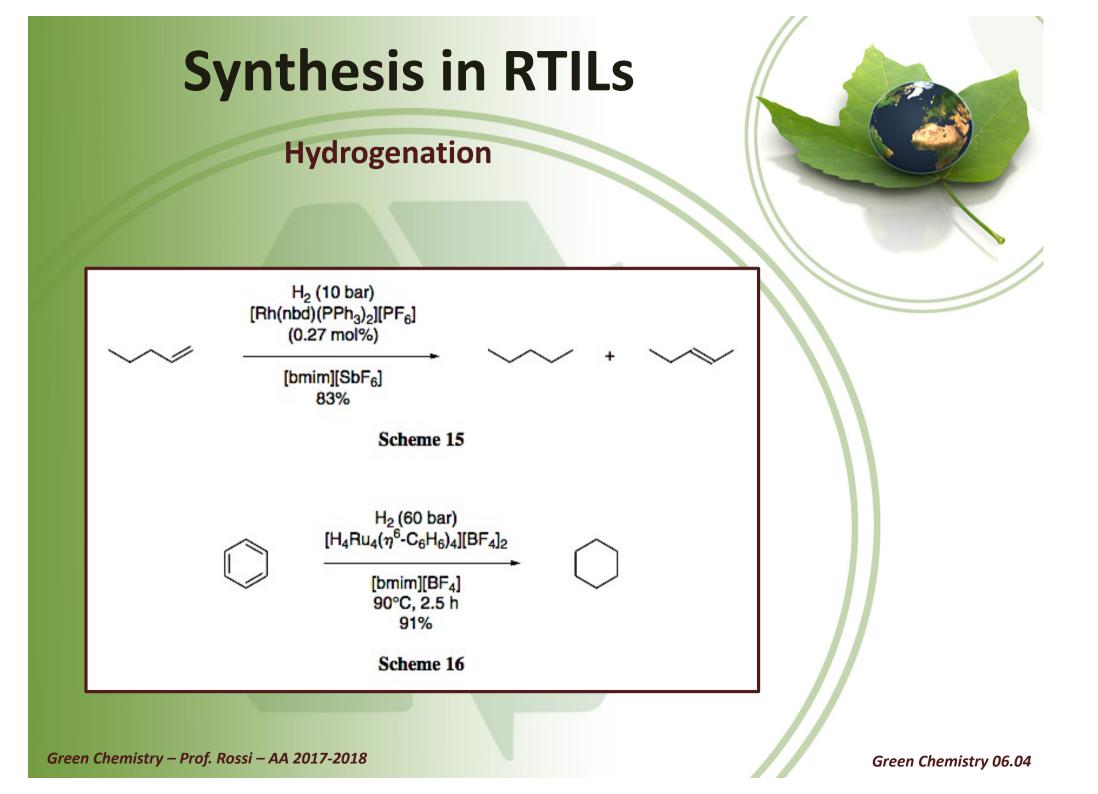

Electrochemistry

Table 7.5 Some examples of metals deposited from ionic liquids.

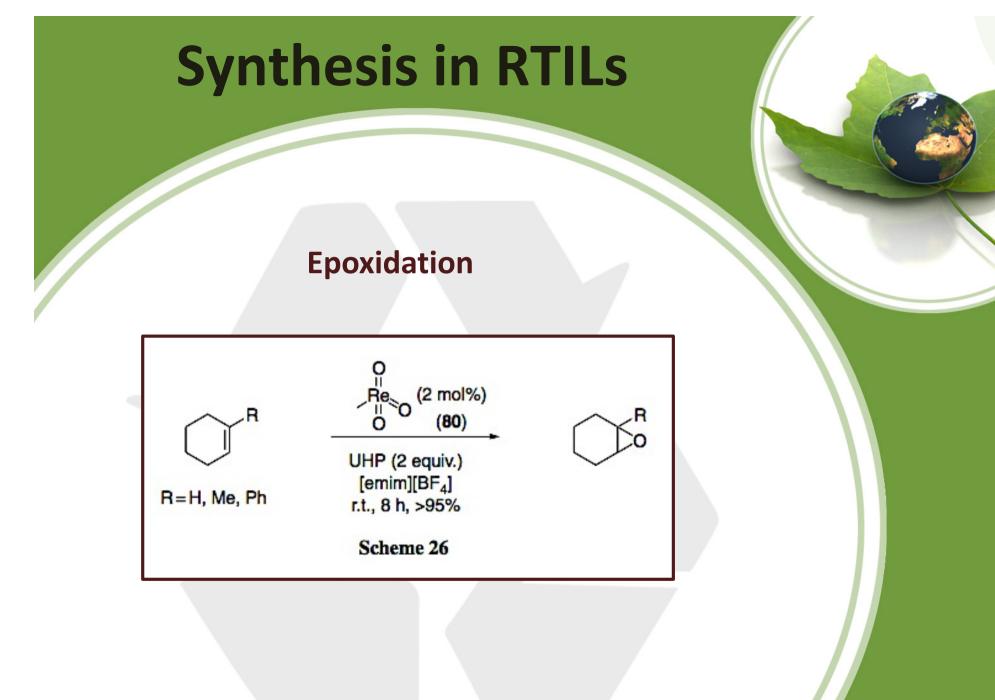

Ionic liquid type		Metals deposited
Discrete anions	<i>e.g.</i> BF_4^- , PF_6^- , (CF ₃ SO ₂) ₂ N ⁻	Cd, Cu, In, Sn, Pb, Au, Ag Ag, Ge
		Li, Mg, Ti, Al, Si, Ta, La, Sm, Cu, Co, Eu, Ag, Cs, Ga
Type-I Eutectics	e.g. AlCl ₃ , ZnCl ₂	Al, Fe, Co, Ni, Cu, Zn, Ga, Pd, Au, Ag, Cd, In, Sn, Sb, Cr, Na, Li, La, Pb
		Fe, Mn, Ni, Cu, Co, Ti, Cr, Nb, Nd, La, Zn, Sn, Cd
Type-II Eutectics	e.g. CrCl ₃ ·6H ₂ O ²⁶	Cr
Type-III Eutectics	e.g. Urea,	Zn, Sn, Cu, Ag
24	Ethylene glycol	Zn, Sn

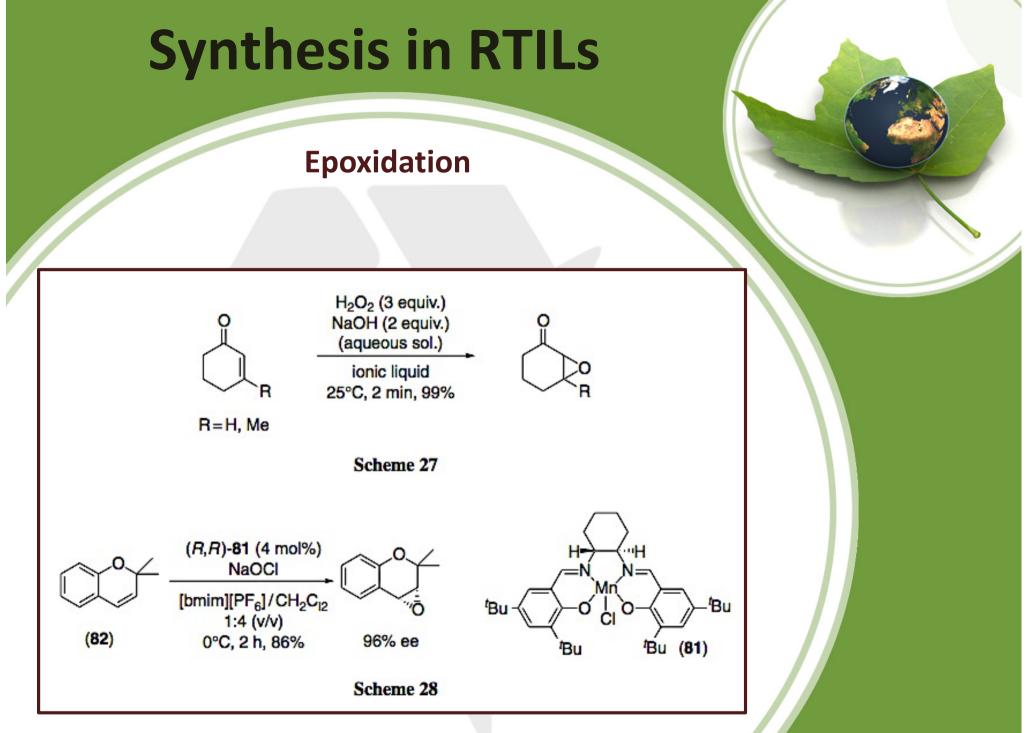


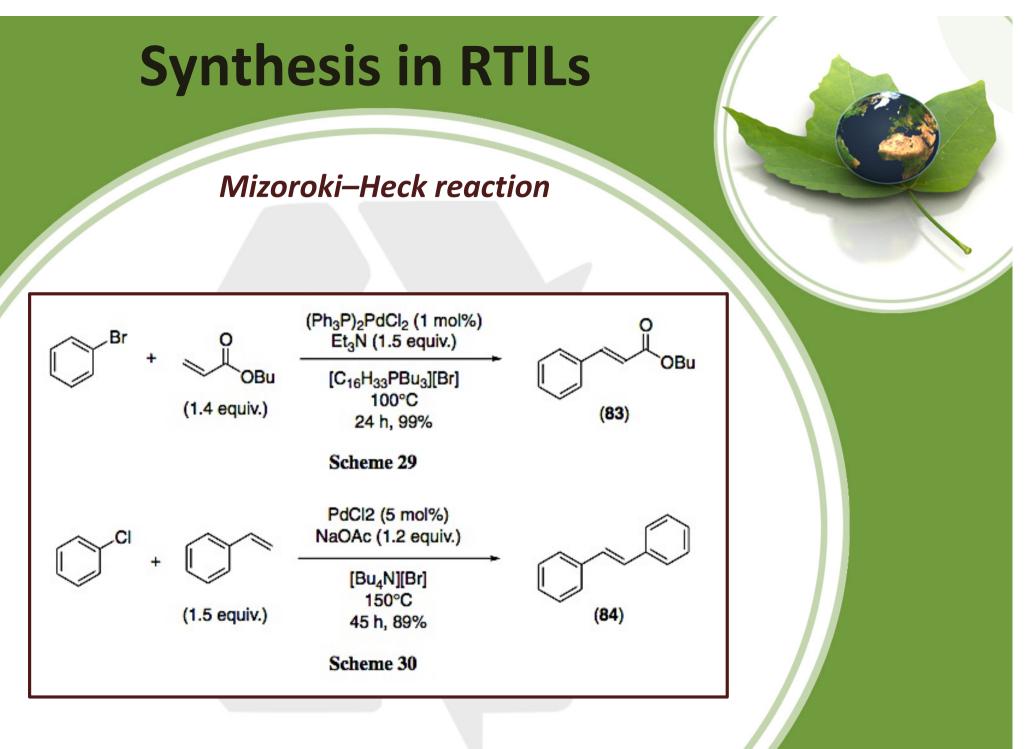

Green Chemistry – Prof. Rossi – AA 2017-2018

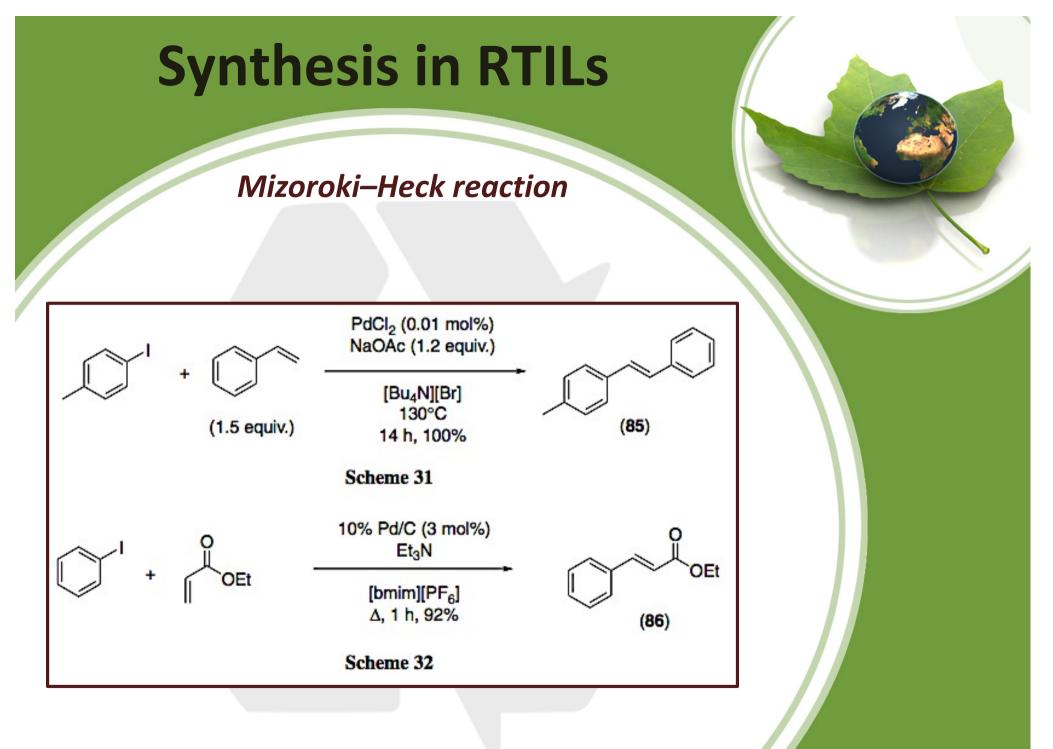


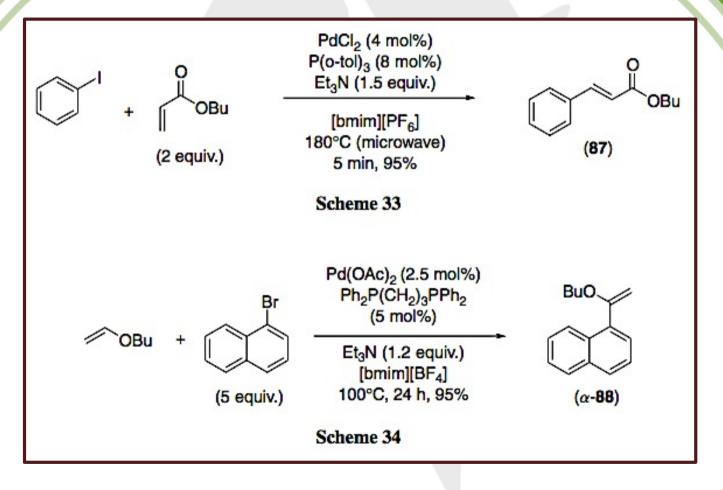
Green Chemistry – Prof. Rossi – AA 2017-2018



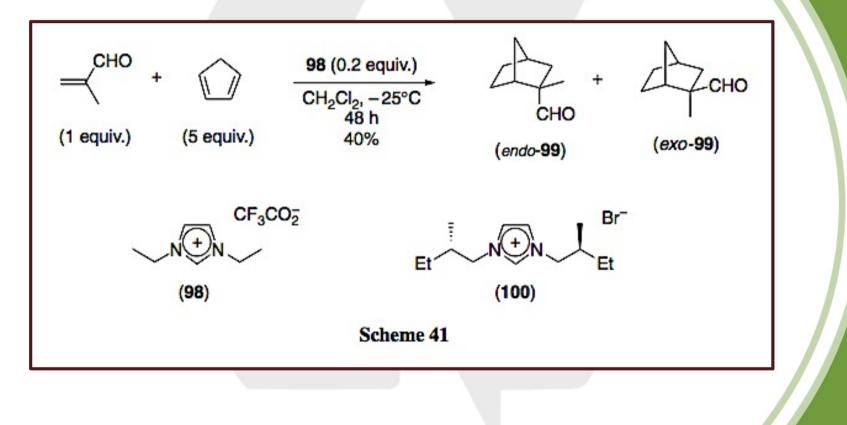

Green Chemistry 06.04

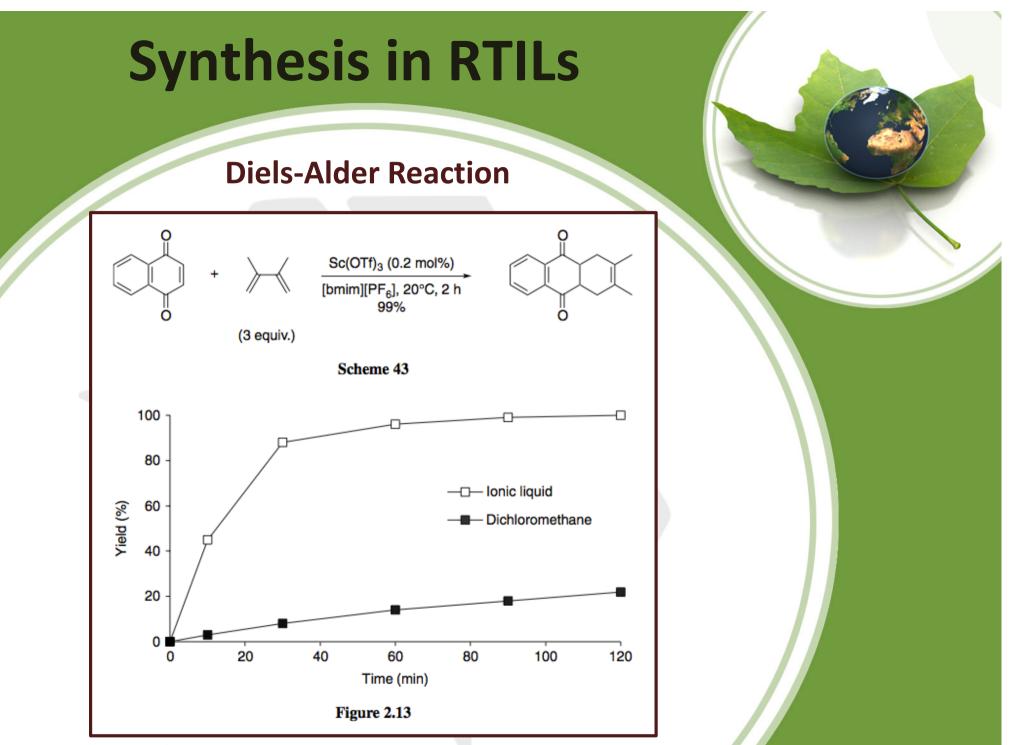




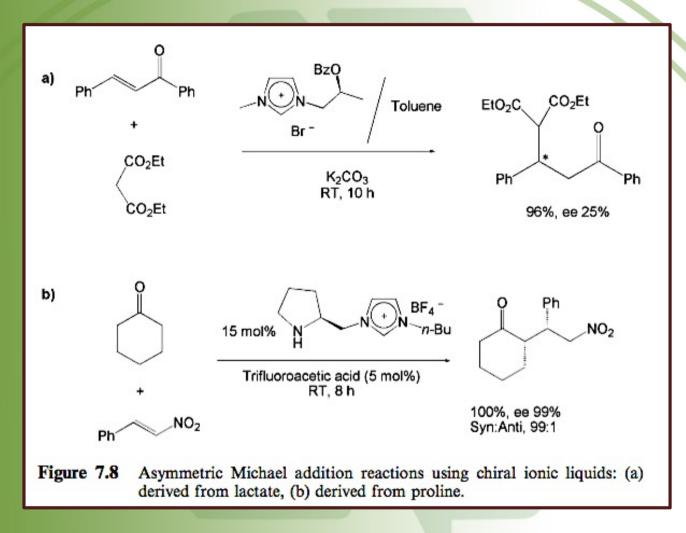




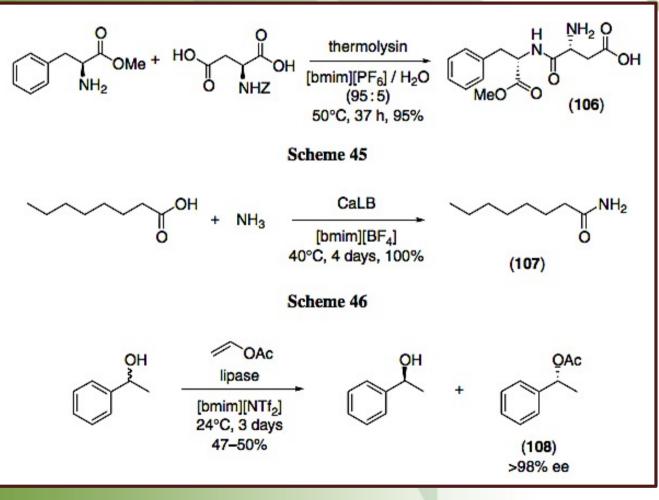

Mizoroki-Heck reaction



Suzuki–Miyaura cross-coupling reaction



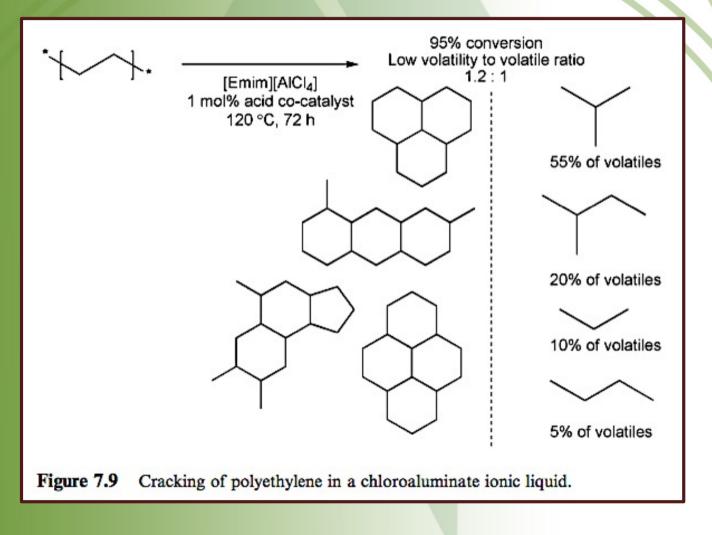
Diels-Alder Reaction


Green Chemistry – Prof. Rossi – AA 2017-2018

Biocatalysis in RTILs

Enzyme Class	Reactions	Typical comments
Lipase	Transesterification and direct esterification (incl. polyester synthesis)	Higher stability of enzyme; greater activity; catalyst recyclable; sometimes higher
	Ring-opening polymerisation of ε -caprolactone	enantio- and regioselectivity compared with VOCs
	Hydrolysis; Alcoholysis Acetylation	
Esterase	Transesterification	Higher stability of enzyme; activity and enantioselectivity similar to VOCs
Protease	Transesterification Hydrolysis (incl. stereospecific)	Higher stability of enzyme; rates comparable to buffer solutions and VOCs; enhanced enantioselectivity
Dehydrogenase	Enantioselective reduction of ketone	Faster rate than VOC
	Oxidation of codeine	
Peroxidase	Oxidation of anisoles and thioanisoles	Activity similar to VOC; stereoselectivity similar to water
β-galactosidase (whole cells <i>e.g.</i> Baker's yeast)	Reduction of ketones	RTIL recyclable after product distilled; RTILs (alone) do not damage cell membrane

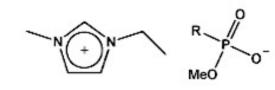
Biocatalysis in RTILs


Green Chemistry 06.04

Polymer Synthesis in RTILs

very high molecular weight polymers

- free-radical polymerizations (including styrene and alkyl methacrylates)
- cationic polymerization of styrene;
- cationic ring-opening polymerization of oxazolines
- reverse atom-transfer radical polymerizations (including methyl methacrylate (MMA) and acrylonitrile)
- ruthenium-catalyzed ring-opening metathesis polymerization of norbornenes;
- palladium-catalyzed copolymerization of propene with carbon monoxide.


Polymer Synthesis in RTILs

Polymer Synthesis in RTILs

1. $R_1 = Et$, $R_2 = Me$; $T_m = 52 °C$, $T_d = 212 °C$ 2. $R_1 = Pr$, $R_2 = Me$; $T_g = -73 °C$, $T_d = 213 °C$, Viscosity = 117 cP, $\alpha = 0.46$, $\beta = 0.99$, $\pi^* = 1.06$ 3. $R_1 = allyl$, $R_2 = Me$; $T_g = -76 °C$, $T_d = 205 °C$, Viscosity = 66 cP, $\alpha = 0.48$, $\beta = 0.99$, $\pi^* = 1.08$ 4. $R_1 = allyl$, $R_2 = Et$; $T_g = -76 °C$, $T_d = 205 °C$, Viscosity = 67 cP, $\alpha = 0.47$, $\beta = 0.99$, $\pi^* = 1.06$

1. R = H; $T_g = -86$ °C, $T_d = 275$ °C, Viscosity = 107 cP, $\alpha = 0.52$, $\beta = 1.00$, $\pi^* = 1.06$ 2. R = Me; $T_g = -66$ °C, $T_d = 262$ °C, Viscosity = 510 cP, $\alpha = 0.50$, $\beta = 1.07$, $\pi^* = 1.04$ 3. R = OMe; $T_g = -74$ °C, $T_d = 289$ °C, Viscosity = 265 cP, $\alpha = 0.51$, $\beta = 1.00$, $\pi^* = 1.06$

Figure 7.10 Structures and physical data for next-generation ionic liquids for carbohydrate dissolution.