Seminar on Machine Learning in Many-Body physics
On Tuesday, May 20 at 3.00 p.m. in the Sala Signorelli (Building "Renato Ricamo"), Dr. Markus Holzmann (Université Grenoble Alpes, CNRS, LPMMC 38000 Grenoble, France) will give a seminar entitled
"Learning (teaching) quantum-many-body states with (to) machines"
Abstract
Quantum Monte Carlo methods have provided the most accurate descriptions of generic, interacting many-body systems, challenged more recently by computer science and machine-learning methods. In this talk I will present the similarities of both approaches from a personal, physics based perspective focusing on the description of ground state properties of quantum liquids and solids [1,2,3].
Recent results on the melting transition of solid helium at zero temperatures [4] and on high pressure hydrogen applications [5] illustrate the power of combining the best of two worlds.
[1] M. Taddei, M. Ruggeri, S. Moroni, and M. Holzmann, Iterative backflow renormalization procedure for many- body ground state wave functions of strongly interacting normal Fermi liquids, Phys. Rev. B 91, 115106 (2015).
[2] M. Ruggeri, S. Moroni, and M. Holzmann, Nonlinear Network description for many-body quantum systems in continuous space, Phys. Rev. Lett. 120, 205302 (2018).
[3] M. Wilson, S. Moroni, M. Holzmann, N. Gao, F. Wudarski, T. Vegge, and A. Bhowmik, Neural network ansatz for periodic wave functions and the homogeneous electron gas, Phys. Rev. B 107, 235139 (2023);
[4] D. Linteau, G. Pescia, J. Nys, G. Carleo, M. Holzmann, Phase diagram and crystal melting of helium-4 in two dimensions, cond-mat/2412.05332. [5] D. Linteau, S. Moroni, G. Carleo, M. Holzmann, Universal neural wave functions for high-pressure hydrogen, cond-mat/2504.07062.
Recent results on the melting transition of solid helium at zero temperatures [4] and on high pressure hydrogen applications [5] illustrate the power of combining the best of two worlds.
[1] M. Taddei, M. Ruggeri, S. Moroni, and M. Holzmann, Iterative backflow renormalization procedure for many- body ground state wave functions of strongly interacting normal Fermi liquids, Phys. Rev. B 91, 115106 (2015).
[2] M. Ruggeri, S. Moroni, and M. Holzmann, Nonlinear Network description for many-body quantum systems in continuous space, Phys. Rev. Lett. 120, 205302 (2018).
[3] M. Wilson, S. Moroni, M. Holzmann, N. Gao, F. Wudarski, T. Vegge, and A. Bhowmik, Neural network ansatz for periodic wave functions and the homogeneous electron gas, Phys. Rev. B 107, 235139 (2023);
[4] D. Linteau, G. Pescia, J. Nys, G. Carleo, M. Holzmann, Phase diagram and crystal melting of helium-4 in two dimensions, cond-mat/2412.05332. [5] D. Linteau, S. Moroni, G. Carleo, M. Holzmann, Universal neural wave functions for high-pressure hydrogen, cond-mat/2504.07062.